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MATLAB PROGRAMMING AND COMPUTING ERRORS 

OBJECTIVES:

After completing this part, students should be able to:

· Operate MATLAB and execute basic MATLAB commands

· Work with matrices and vectors in MATLAB environment

· Plot and interact with figures in MATLAB 

· Differentiate between script M-files and function M-files

· Understand different programming tools in MATLAB

· Develop, debug and organize MATLAB Programs

· Understand digital representation of integer and non-integer numbers 

· Recognize different sources of numerical computing errors

· Understand different types of errors such as round-off errors, absolute and relative errors, and truncation errors

· Apply approaches to reduce computing errors
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•

Basic MATLAB Operations

Ø

Start and End MATLAB session

Ø

Basic operations

Ø

Built

-

in variables and functions

Ø

MATLAB Workspace

Ø

On

-

line Help

•

Notations and Types of Variables

•

Matrices and Vectors

Ø

Creating matrices and vectors

Ø

Operations with the matrix (or vector) element

•

Working with Matrices and Vectors

Ø

Linear algebra

Ø

Vectorized 

operations

Ø

Array operators

•

Plotting 
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[image: image2.wmf]Start and End MATLAB Session

•

Starting MATLAB

–

Double click on the MATLAB icon

–

After startup, MATLAB displays a 

command window

(>>) for 

entering commands and display text only results.

–

MATLAB responds to commands by printing text in the command 

window, or by opening a 

figure window

for graphical output

•

Moving between windows

–

Toggle between windows by clicking on them with mouse

•

Ending MATLAB

–

Type “quit” at the command prompt (>>)

>> quit

–

Click on the window toggle (x) 
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•

Enter formula at the command prompt

>> 3 + 4 

-

1

ans

=

6

>> 

ans

/3

ans

=

2

•

Define and use variables

>> a = 6;

>> b = 7

b =

7

>> c = a/b

c =

0.8571

Note: Results of intermediate steps can be suppressed with semic

olon 
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[image: image5.wmf]Built

-

in Variables and Functions

•

pi

(= 

p

) and 

ans

are a built

-

in variable

>> pi

ans

=

3.1416

>> sin(

ans

/4)

ans

=

0.7071

Note:

There is no “degrees” mode. All angles are measured in radians.

•

Many standard mathematical functions, such as 

sin

, 

cos

, 

log

, 

and 

log10

, are built in

> log(10)

ans

=

2.3026

>> log10(10)

ans

=

1

Note:

log

represents a natural logarithmic. 
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[image: image6.wmf]List of Built

-

in Variables

Value of expression when that expression 

is not assigned to variable

Floating point precision

3.141492….

Largest positive floating point number

Smallest positive floating point number

A number larger than 

realmax

Not a number

ans

eps

pi

realmax

realmin

inf

NaN
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•

All variables defined as the result of entering statements in th

e 

command window, exist in the MATLAB workspace

>> who

Your variables are:

a    

ans  

b    c 

•

Being aware of the workspace allows you to

–

Create, assign and delete variables

–

Load data from external files

–

Manipulate the MATLAB path

•

The 

whos

command lists the name, size, memory allocation and the 

class of each variables defined in the workspace

>>

whos

Name      Size           Bytes  Class

a         1x1                8  double array

ans       

1x1               8  double array

b         1x1                8  double array

c         1x1                8  double array

Grand total is 4 elements using 32 bytes

Built

-

in variable 

classes

are 

double

, 

char

,

sparse

, 

struct

, and 

cell

The class of a variable determines the type

of data that can be stored
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-

line Help

•

Use on

-

line help to request info on a specific function

•

Use 

lookfor 

to find functions by keywords

•

Syntax

help

functionName

lookfor 

functionName

•

Examples

>> help log10

LOG10  Common (base 10) logarithm.

LOG10(X) is the base 10 logarithm of the elements of X.   

Complex results are produced if X is not positive.

See also LOG, LOG2, EXP, LOGM.

>>

lookfor

logarithmic

LOGSPACE Logarithmically spaced vector.

LOGSIG Logarithmic sigmoid transfer function.
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•

Subscript notation

–

If A is a matrix, A(

i,j

) selects the element in the 

i

-

th 

row and

j

-

th 

column

–

The subscript notation can be used on the right hand side (or le

ft 

hand side) of expression to refer to (or assign to) a matrix ele

ment

•

Colon notation

–

Colon notation is very powerful and very important in the effect

ive 

use of  MATLAB. The colon is used as an operator and as a 

wildcard

•

Create vector

•

Refer to (or extract) ranges of matrix elements

–

Syntax:

Startvalue

:

endvalue

Startvalue

:

increment

:

endvalue
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•

MATLAB variables are created with an assignment statement

>> x = 

expression

Where 

expression

is a legal combination of numerical values, mathematical 

operators, variables and function calls that evaluates to a matr

ix, vector or 

scalar

•

Matrix

–

A two or 

n

dimensional array of values

–

The elements can be numeric values (real or complex) or characte

rs (must 

be defined first when executed)

•

Vector

–

A one dimensional array of values

–

A matrix with 

one row

or 

one column

•

Scalar

–

A single value

–

A matrix with 

one row

and 

one column
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•

Legal variable names:

–

Begin with one of a

-

z or A

-

Z

–

Have remaining characters chosen from a

-

z, A

-

Z,0

-

9, or 

–

–

Have a maximum length of 31 characters

–

Should not be the name of a built

-

in variables, functions, or user

-

defined functions

Note: 

–

myname

and 

myName

are different variables. MATLAB is case 

sensitive.

–

Only use built

-

in variables on the right hand side of an expression

–

Exception: 

i

and 

j

are pre assigned to         . One or both of 

i

and

j 

are often reassigned as loop indices.

1

-
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[image: image12.wmf]Matrices and Vectors

•

Manual Entry

–

The elements in a vector (or matrix) are enclosed in square brac

kets. 

•

When creating a row vector, separate elements with a space.

•

When creating a column vector, separate elements with a semicolo

n

>> a = [1 2 3]

a =

1     2     3

>> b = [1;2;3]

b =

1

2

3

>> c = [1 2 3;2 3 4]

c =

1     2     3

2     3     4
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[image: image13.wmf]Transpose Operator and Overwriting

•

Once a vector (or a matrix) is created and assigned to a variabl

e, the 

variable can be transformed with other operators.

•

The transpose operator converts a row vector to a column vector 

(and 

vice versa).

>> a = [2 4 5]

a =

2     4     5

>> a'

ans

=

2

4

5

•

The variable can be reassigned

>> a = a'

a =

2

4

5
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•

Use commas or semicolons to enter more than one statement at 

once. Commas allow multiple statements per line without 

suppressing output

>> a = 1; b = [8 9], c = b'

b =

8     9

c =

8

9
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[image: image15.wmf]Creating Vectors with Built

-

in Functions

•

The 

linspace

function creates vectors with elements having 

uniform linear spacing

•

The 

logspace

function creates vectors with elements having 

uniform logarithmic spacing

>> u =

linspace

(0,2,5)

u =

0    0.5000    1.0000    1.5000    2.0000

>> u =

logspace

(0,2,5)

u =

1.0000    3.1623   10.0000   31.6228  100.0000
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[image: image16.wmf]Functions to Create Matrices

Create a matrix with a specified diagonal 

entries or extract diagonal entries of a 

matrix

Create an identity matrix

Create a matrix with filled ones

Create a matrix filled with random 

numbers

Create a matrix filled with zeros

Create a row vector of linearly spaced 

elements

Create a row vector of logarithmically 

spaced elements

diag

eye

ones

rand

zeros

linspace

logspace
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[image: image17.wmf]Examples of 

ones, 

diag

, zeros, eye

>> ones(3,3)

ans

=

1     1     1

1     1     1

1     1     1

>> zeros(2,3)

ans

=

0     0     0

0     0     0

>> a = [1 2 3;4 5 6;3 4 5]; b =

diag

(a)

b =

1

5

5

>> 

diag

(a(1:3))

ans

=

1     0     0

0     4     0

0     0     3

>> eye(3)

ans

=

1     0     0

0     1     0

0     0     1
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[image: image18.wmf]Examples of subscript and colon notations

>> a = [4 5 6;7 8 9;2 3 4];

>> b = a(3,2)

b =

3

Note: Referring to an element on the third row and second column

. 

>> c = a(3,4)

???  Index exceeds matrix dimensions.

Note: Referring to elements outside of current matrix dimensions

results in an error. 

>> d = a(1:3,3)

d =

6

9

4

Note: Referring to elements on the first 3 rows and third column

. 
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•

Strings are matrices with character elements

•

String constant are enclosed in single quotes

•

Colon notation and subscript operation apply

>> first =

'Yudi'

;

>> last =

'Samyudia'

;

>> name = [first,' ',last]

name =

Yudi Samyudia

>> length(name)

ans

=

13

>> name(4:6)

ans

=

i S
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[image: image20.wmf]Functions for String Manipulations

Convert an integer to the character using ASCII 

code or combine character into a character matrix

Find string in another string

Return the number of characters in a string

Convert a number to a string

Convert a string to a number

Compares two strings

Identifies rows of a character array that begin with 

a string

Compares the first n elements of two strings

Converts strings and numeric values to a string

char

findstr

length

num2str

str2num

Strcmp

strmatch

strncmp

Sprintf
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[image: image21.wmf]Working with Matrices and Vectors

•

Addition and subtraction

>> a = [2 3 4];

>> b = [2 1 2];

>> c = a

-

b

c =

0     2     2

>> d = a+b

d =

4     4     6

•

Polynomials

–

MATLAB polynomials are stored as vectors of coefficients. The po

lynomial 

coefficients are stored in decreasing powers of

x

–

Example: 

. We want to know

y(1.5)

>> y = [1 0 

-

2 12];

>> 

polyval

(y,1.5)

ans

=

12.3750

12

2

3

+

-

=

x

x

y
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[image: image22.wmf]•

Array Operators

–

Array operators support element by element operations that are n

ot 

defined by the rules of linear algebra

–

Array operators are designated by a period pre

-

pended to the 

standard operator

Symbol

Operation

.*

element by element multiplication

./

element by element “right” division

.

\

element by element “left” division

.^

element by element exponentiation

–

Array operators are a very important tool for writing 

vectorized 

code
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[image: image23.wmf]Examples of using array operators

>> a = [1 2 3];

>> b = [6 7 8];

>> c = a.*b

c =

6    14    24

>> c = a./b

c =

0.1667    0.2857    0.3750

>> d = a.

\

b

d =

6.0000    3.5000    2.6667
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[image: image24.wmf]Working with External data file

•

Write data to a file

>> 

save

fileName

>> 

save

fileName 

variable1 variable2

…

>> 

save

fileName 

variable1 variable2

… 

-

ascii

•

Read in data stored in matrices

>> 

load

fileName

>> 

load

fileName matrixVariable

•

Loading data from external file

>> load 

wolfSun

.

dat

>> 

xdata 

= 

wolfSun

(:,1)

>> 

ydata 

= 

wolfSun

(:,2)

>> plot(

xdata

,

ydata

)
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•

Plotting (x,y) data

>> plot(x,y)

>> plot(

xdata

,

ydata

,symbol)

>> plot(x1,y1,symbol1,x2,y2,symbol2,…)

•

Axis scaling and annotation

>> 

loglog

(x,y)

log10(y) versus log10(x)

>> plot(x,y)

linear y versus linear x

>> 

semilogx

(x,y)

linear y versus log10(x)

>> 

semilogy

(x,y)

log10(y) versus linear x

•

Multiple plot

>> subplot(2,2,1)

two rows, two column, this figure

•

2D (contour) and 3D (surface) plotting

>> contour

>> plot3

>> mesh
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[image: image26.wmf]Overview

•

M

-

Files

–

Script m

-

files

–

Function m

-

files

•

Flow control

–

Relational operators

–

Conditional execution

–

Loops

•

Vectorization

–

Pre

-

allocation of vectors and matrices

–

Array and Logical indexing

•

Programming tips

–

Variable number of I/O parameters

–

Indirect function evaluation

–

Inline function objects

–

Global variables

•

Debugging and Organizing MATLAB Programs  


	NOTE
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[image: image27.wmf]Preliminaries

•

M

-

files are files that contain MATLAB programs

–

Plain text files

–

File must have “.m” extension

–

Use MATLAB editor (

File

, 

Open/New

, 

M

-

File

)

•

Executing M

-

files

–

M

-

files must be in the current active MATLAB path

•

Use 

pwd

to check the current active MATLAB path

•

Manually modify the path: 

path

, 

addpath

, 

rmpath

, or 

addpwd

•

….or use interactive 

Path Browser

–

A program can exist, and be free of errors, but it will not run 

if 

MATLAB cannot find it


	NOTE



	Slide 28
	
[image: image28.wmf]MATLAB Script M

-

Files

•

Collection of executed MATLAB commands

–

Not really a program

–

Useful for tasks that never change

–

Script variables are part of workspace

–

Useful as a tool for documenting assignments

•

Use 

a script M

-

file

to run function for 

specific parameters

required by 

the assignment

•

Use 

a function M

-

file

to solve the problem for 

arbitrary parameters

Tips:

–

As 

a script M

-

file 

is a collection of executed MATLAB commands, 

no advantages over the use of script, except for “documentation”

.

–

The main program is often implemented using 

a script M

-

file

–

Always use 

a function M

-

file

when dealing with the possible 

changes in parameters/inputs
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[image: image29.wmf]Development of a Script M

-

file

•

Choose 

New

… from 

File

menu

•

Enter the sequence of command lines

–

Example

: Plotting a quadratic function (exp1.m)

x = [0:.1:10];

y = x.^2 

-

2*x;

plot(x,y);

xlabel

('Input');

ylabel

('Output');

grid on;

axis([min(x) max(x) min(y) max(y)]);

•

Choose 

Save

…. from the 

File

menu

–

Save as exp1.m

•

Run it

>> exp1
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[image: image30.wmf]Side Effects of Script M

-

Files

•

All variables created in a script M

-

file are added to the workspace.

–

The variables already existing in the workspace may be 

overwritten

–

The execution of the script can be affected by the state variabl

es in 

the workspace

•

Side Effects from scripts

–

Create and change variables in the workspace

–

Give no warning that workspace variables have changed

“Because scripts have side effects, it is better to encapsulate 

any 

mildly complicated numerical in 

a function M

-

file

”
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[image: image31.wmf]Function M

-

Files

•

Function M

-

files are subprograms

–

Functions use 

input

and 

output parameters

to communicate with 

other functions and the command window

–

Functions use 

local variables

that exist only while the function is 

executing. Local variables are distinct from the variables of th

e 

same names in the workspace or in other functions

•

Input parameters allow the same calculation procedure 

(algorithm) to be applied for different data. 

–

Function M

-

files are 

reusable

•

Functions can call other functions

•

Specific tasks can be encapsulated into functions.

–

Enable the development of 

structured solutions (programming)

to 

complex problems 
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[image: image32.wmf]Syntax of function m

-

files

•

The first line of a function m

-

file has the form

function [

outArg

] = 

funName

(

inArg

)

•

outArg

are the assigned output parameters for this function

–

A comma separated list of variable names

–

[ ] is optional for only one output argument

–

Functions with no 

outArg

are legal

•

inArg

are the input parameters to be used in the function

–

A comma separated list of variable names

–

Functions with no 

inArg

are legal


	NOTE
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[image: image33.wmf]Examples of a Function M

-

File

mult

.m

function

mult

(x,y),

%

%

x*y

>> x = 1; y = 3;

>>

mult

(x,y)

kali.m

>> x = 1; y = 3; z= 4;

>> [t,n] = kali(x,y,z)

t =

7

n =

13

function [s,p] = kali(x,y,z)

%

s = x*y+z;

p = x+y*z;

Script

-

file as 

main program 

to assign data

for the input     

parameters

Script

-

file as 

main program 

to assign data

for the input     

parameters
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[image: image34.wmf]Further Notes on Input and Output 

Parameters

•

Values are communicated through input and output arguments

•

Variables defined inside a function are local to that function

–

Local variables are invisible to other functions and to the comm

and 

window environment

•

The number of return variables should be match the number of 

output variables provided by the function

–

If not the same, the m

-

file are still working but not returning all 

variables in the command window

–

nargout

can relax this requirement 
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[image: image35.wmf]READ Inputs and WRITE Outputs

•

It is usually desirable to print results to the screen or to a f

ile

•

On rare occasions, it may be helpful to prompt the user for 

information not already provided by the input parameters to a 

function

READ Inputs to functions

–

Use 

input

function 

–

Use of input parameters to functions are preferred

WRITE Outputs from function

–

disp

function for simple output

–

fprintf

function for formatted output


	NOTE
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[image: image36.wmf]Examples of READ and WRITE

>> x = input('Enter value of x:');

Enter value of x:

input

command

disp

command

>> y = 4:6;

disp

(y)

4     5     6

fprint

command

>> x = 4;

>>

fprintf

('Square root of %g is %8.6f

\

n',x,

sqrt

(x));

Square root of 4 is 2.000000

NOTE:

disp

command

Simple to use. Provide limited control over appearance of output

fprintf

command

Slightly more complicated than 

disp

, but provide total control

over appearance of outputs 
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[image: image37.wmf]Flow Control

•

To enable the implementation of computer algorithm, a 

computer language needs control structures for

–

Comparison

–

Conditional execution: 

branching 

–

Repetition: 

looping or iteration

•

Comparison

–

Is achieved with 

relational operators

. Relational operators are used 

to test whether two values are equal, greater than or less than 

another.

–

The result of a comparison may also be modified by 

logical 

operators
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[image: image38.wmf]Relational Operators

•

Relational operators used in MATLAB are:

<

less than

<=

less than or equal to

>

greater than

>=

greater than or equal to

~=

not equal to

•

The result of comparison: True or False. In MATLAB,

–

Any nonzero value (including non empty string) is equivalent to 

True

–

Only zero is equivalent to False

Note

: The <=, >= and ~= operators have “=“ as the second character. 

=<, => and =~ are not valid operators.
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[image: image39.wmf]Examples of Relational Operators

>> a = 2; b = 4;

>> c = a < b

c =

1

>> d = a>b

d =

0

>> x = 3:7; y = 5:

-

1:1;

>> z = x>y

z =

0     0     1     1     1

c = 1 means TRUE

d = 0 means FALSE


	NOTE
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[image: image40.wmf]Logical Operators

•

Logical operators are used to combine logical expressions (with 

“and” or “or”), or to change a logical value with “not”

Operator

Meaning

&

and

|

or

~

not

•

Example

:

>> a = 2; b = 4;

>> c = a < b

c =

1

>> d = a>b

d =

0

>> e = a&d

e =

0

1 & 1 = 1

1 & 0 = 0

1 or 0 = 1

~1 = 0
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[image: image41.wmf]Summary of Relational and Logical 

Operators

•

Relational operators involve comparison of two values

•

The result of a relational operator is a logical (TRUE/FALSE) 

value

•

Logical operators combine (or negate) logical values to produce 

another logical value

•

There is always more than one way to express the same 

comparison
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[image: image42.wmf]Conditional Execution or Branching (1) 

•

A comparison or another logical test is often followed by a bloc

k of 

commands to be executed (or skipped).

•

Conditional execution in MATLAB:

(1) Use 

if…else….end

if 

expression

block of statements

end

if 

expression

block of statements

elseif

expression

block of statements

else

block of statements

end

if 

expression

block of statements

else

block of statements

end
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if x>0

disp

('x is positive')

end

if x<0

disp

('x is negative')

else

disp

('x is positive')

end

if x>2

disp

('x is greater than two')

elseif

x<0

disp

('x is negative')

else

disp

('x is between zero and two')

end
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[image: image44.wmf]•

Conditional execution in MATLAB:

(2) Use 

switch …. case …case….end

Conditional Execution or Branching (2) 

switch 

expression

case 

value1

block of statements

case 

value2

block of statements

case 

value3

block of statements

otherwise

block of statements

end
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x = '....';

switch x

case 'red'

disp

('Color is red')

case 'green'

disp

('Color is green')

case 'black'

disp

('Color is black')

otherwise

disp

('Color is not red, green or black')

end

“A switch construct is useful when a test value can take on disc

rete value that

are either integers or strings”
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[image: image46.wmf]Repetition or Looping

•

A sequence of calculations is repeated until either

–

All elements in a vector or matrix have been processed, OR

–

The calculations have produced a result that meets a 

predetrmined 

termination criterion

•

Repetition in MATLAB

–

for

loops

–

while

loops

for index = 

expression

block of statements

end

while 

expression

block of statements

end
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[image: image47.wmf]Examples of 

for

loops

for i = 1:2:n,

y(i) = x(i)^2;

end

for i = n:

-

1:1,

y(i) = x(i)^2;

end

x = 1:5;

sumx

= 0;

for i = 1:length(x),

sumx

=

sumx

+ x(i);

end

“

for

loops are most often used when each element in a vector or matr

ix is to 

be processes”

Increment is 

increasing

or 

decreasing 
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[image: image48.wmf]Examples of 

while

loops

x = ….

y = ….. 

while abs(x

-

y) < error,

z = x 

–

2*x +1;

y = 

sqrt

(z);

end

•

“

while

loops are most often used when an iteration is repeated until

a termination criterion is met”.

•

The 

break

and 

return

statements provide an alternative way to exit from  

a loop construct. 

break

and

return

may be applied to 

for 

loops or 

while

loops

•

break

is used to escape from an enclosing 

while

or 

for

loop. Execution continues

at the end of the enclosing loop construct

•

return

is used to force an exit from a function. This can have the eff

ect of escaping

from a 

function

. Any statements following the loop that are in the function bod

y are 

skipped.  
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[image: image49.wmf]Comparison of 

break

and 

return

function k =

demobreak

(n)

..........

while k<=n

if x(k)>0.8

break;

end

k= k+1;

end

…………

function k =

demoreturn

(n)

.........

while k<=n

if x(k) > 0.8

return;

end

k = k+1

end

Jump to end of enclosing

“while …. end” block

Return to calling

function
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[image: image50.wmf]Vectorization

•

Vectorization 

is the use of vector operation (MATLAB 

expression) to process all elements of a vector or matrix.

–

Properly 

vectorized 

expressions are equivalent to looping over the 

elements of the vectors or matrices being operated upon.

–

A 

vectorized 

expression is more compact and results in code that 

executes faster than a non

-

vectorized 

expression

•

To write 

vectorized 

code

–

Use vector operations instead of loops, where applicable

–

Pre

-

allocate memory for vectors and matrices

–

Use 

vectorized 

indexing and logical functions 

“Code that is slow and correct is always better than code that i

s fast and incorrect.”

Start with the loops, then 

vectorized 

when needed.
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[image: image51.wmf]Example

y = ............% some computation to define y

for j =1:length(y)

if y(j)>0

s(j) =

sqrt

(y);

else

s(j) = 0;

end

end

y = ............% some computation to define y

s = zeros(size(y));

for j=1:length(y)

if y(j)>0

s(j) =

sqrt

(y(j));

end

end

“Without 

vectorization

”

“With 

vectorization

”

“Pre

-

allocated memory”
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[image: image52.wmf]Array Indexing

•

Use a vector or matrix as the “subscript” of another matrix

>> x =

sqrt

(0:4:20)

x =

Columns 1 through 5 

0    2.0000    2.8284    3.4641    4.0000

Column 6 

4.4721

>> i = [1 2 5];

>> y = x(i)

y =

0     2     4

k = 0;

for i = [1 2 5]

k = k+1;

y(k) = x(i)

end

º
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[image: image53.wmf]Logical Indexing

•

Use a vector or matrix as the mask to select elements from anoth

er 

matrix

FIND   Find indices of nonzero elements.

I = FIND(X) returns the indices of the vector X 

that are non

-

zero.  

REM    Remainder after division.

REM(x,y) is x 

-

y.*fix(x./y) if y ~= 0. 

>> x =

sqrt

(0:4:20)

x =

Columns 1 through 5 

0    2.0000    2.8284    3.4641    4.0000

Column 6 

4.4721

>> j = find(

rem

(x,2)==0)

j =

1     2     5

>> z = x(j)

z =

0     2     4
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[image: image54.wmf]Programming Tips (1)

1.

Variable Input and Output Arguments

–

Each function has internal variables 

nargin

and 

nargout

•

Use the value of 

nargin

at the beginning of a function to find out how many 

input arguments were supplied

•

Use the value of 

nargout 

at the end of a function to find out how many input 

arguments are expected

–

Usefulness:

•

Allows a single function to perform multiple related tasks

•

Allows functions to assume default values for some inputs, there

by simplifying 

the use of the function for some tasks

–

Examples: see plot.m

2.

Indirect function evaluation (

feval

function)

–

The 

feval

function allows a function to be evaluated indirectly

–

Usefulness:

•

Allows routines to be written to process an arbitrary f(x)

•

Separates the reusable algorithm from the problem specific code
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[image: image55.wmf]Programming Tips (2)

3.

Inline function objects

–

Usefulness:

•

Eliminate need to write separate m

-

files for functions that evaluate a simple 

formula

•

Useful in all situations where 

feval

is used. 

–

Example: 

4.

Global variables

–

Usefulness:

•

Allows bypassing of input parameters if no other mechanism (such

as pass

-

through parameters) is available

•

Provides a mechanism for maintaining program state (GUI applicat

ion)

function y =

myFun

(x)

y = x.^2 

-

log(x);

myFun

= inline('x.^2 

-

log(x)');
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[image: image56.wmf]Workspace

>> x=1;

>> y = 2;

>> s = 1.2;

>> z = 

localFun

(x,y,s)

localFun

.m

Function d = 

localFun

(a,b,c)

…………

d = a + b*c;

(x,y,s)           (a,b,c)

z                           d

Local variables

Workspace

>> x=1;

>> y = 2;

>> global ALPHA

>> ALPHA = 1.2

>> z = 

globalFun

(x,y)

globalFun

.m

Function d = 

globalFun

(a,b)

…………

d = a + b*ALPHA;

(x,y)           (a,b)

z                           d

Global variable
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[image: image57.wmf]Debugging and Organizing MATLAB 

Programs

•

Debugging……..

–

Is inevitable

–

Can be anticipated with good program design

–

Can be done interactively in MATLAB

•

Organized programs are…..

–

Easier to maintain

–

Easier to debug

–

Not much harder to write
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[image: image58.wmf]Preemptive Debugging

•

Use defensive programming

–

Do not assume the input is correct. Check it.

–

Provide a “catch” or default condition for a 

if…

elseif

…else….

–

Include optional print statements that can be switched on when t

rouble 

occurs

–

Provide diagnostic error messages

•

Break large programming projects into modules

–

Develop reusable tests for key modules

–

Good test problems have known answers

–

Run the tests after changes are made to the module

•

Include diagnostic calculations in a module

–

Enclose diagnostic inside 

if…end

blocks so that they can be turned off

–

Provide extra print statements that can be turned on and off 
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[image: image59.wmf]Programming Style

•

A consistent programming style gives your program a visual 

familiarity that helps the reader quickly comprehend the 

intention of the code

•

A programming style consists of:

–

Visual appearance of the code

–

Conventions used for variable names

–

Documentation with comment statements

•

Use visual layout to suggest organization

–

Indent 

if….end

and 

for….end

blocks

–

Blank lines separate major blocks of code

•

Use meaningful variable names

•

Follow Programming and Mathematical Conventions


	NOTE



	Slide 60
	
[image: image60.wmf]Example

function x = Gauss(A,b),

%

% Inputs:

%

A is the n by n coefficient matrix

%

b is the n by k right hand side matrix

%

% Outputs:

%

x is the n by k solution matrix

%

[n,k1]=size(A); [n1,k] = size(b); x = zeros(n,k);

for i=1:n

-

1,

m=

-

A(i+1:n,i)/A(i,i);

A(i+1:n,:) = A(i+1:n,:) + m*A(i,:);

b(i+1:n,:) = b(i+1:n,:) + m*b(i,:);

end;

x(n,;) =b(n,:) ./A(n,n);

for i=n

-

1:

-

1:1,

x(i,:) =(b(i,:)

-

A(i,i+1:n)*x(i+1:n,:))./A(i,i);

end;

Put 

Comments

Meaningful name

Indent for 

repetition
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[image: image61.wmf]Comment Statements

•

Write comments as you write the code, not after

•

Include a prologue that supports “help”

–

First line of a function is the definition

–

Second line must be a comment statement

–

All text from the second line up to the first non

-

comment is printed 

in response to: 

help

fileName

.

•

Assume that the code is going to be used more than once

•

Comments should be short notes that augment the meaning of 

the program statements. Do not parrot the code

•

Comments alone do not create good code

–

You cannot fix a bug by changing the comments 
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[image: image62.wmf]Modular Code

•

A module should be dedicated to one task

–

Flexibility is provided by input/output parameters

•

General purpose modules need….

–

Description of input/output parameters

–

Meaningful error messages so that user understands the problem

•

Reuse modules

–

Debug once, use again

–

Minimize duplication of code

–

Any improvements are available to all programs using that module

–

Error messages must be meaningful so that user of general purpos

e routine 

understands the problem

•

Organization takes experience

–

Goal is not to maximize the number of M

-

files

–

Organization will evolve on complex projects
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[image: image63.wmf]Debugging Tools

•

MATLAB version 5.x (and later) has an interactive debugger

•

The 

type

and 

dbtype

commands are used to list contents of an 

m

-

file

•

The 

error

function prints a message to the screen, and stops 

execution. This provides for graceful failure and the opportunit

y 

to inform the reader of potential causes for the error

•

The 

warning 

function prints a message to the screen, but does 

not stop execution

•

pause

or 

keyboard

commands can be used to temporarily halt 

execution
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[image: image64.wmf]Overview

•

Digital Representation of Numbers

–

Integers

–

Non

-

integers

–

Floating point

•

Errors in Numerical Computing

–

Precision

–

Round

-

off errors

–

Absolute and Relative Error

–

Truncation Errors
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[image: image65.wmf]Preliminaries

•

Significant Figures of a Number

–

Digits that can be used with confidence

•

23400 can have three, four or five significant figures

–

2.34 

´

10

4

or 2.340 

´

10

4

or 2.3400 

´

10

4

•

We need criteria to specify how confident we are in our approxim

ate result

–

Some numbers (

p

, e or 1/3) cannot expressed exactly by a limited number of 

digits. Because computers retains only a finite number of signif

icant figures, 

there are always an error, called as round

-

off errors

•

Numerical errors

–

Arise from the use of approximations to represent exact mathemat

ical operations 

and quantities

•

True value = approximation + error 

•

Relative error = error/true value

–

True value will be known only when we deal with functions that c

an be solved 

analytically. In many actual situations, the true value is rarel

y available.

•

Relative error = approximate error/approximation

= (current approximation 

–

previous approximation)/current approximation
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[image: image66.wmf]Computer Representation of Integers

•

16 Bit computer 

–

Integer: 

-

32,767 to 32,767

–

Number 

–

173

: 

•

(1 

´

2

7

) = 128

•

(1 

´

2

5

) =   32

•

(1 

´

2

3

) =     8

•

(1 

´

2

2

) =     4

•

(1 

´

2

0

) =     1

1

0

0

0

0

0

0

0

1

0

1

0

1

1

0

1

Sign

Number

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

2

10

2

11

2

12

2

13

2

14
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[image: image67.wmf]Computer Representation of Non

-

Integers

•

Floating point number

m

.

b

e

m

= mantissa; 

b

= the base of number system

e

= the exponent

1/

b

< 

m

< 1

: Normalization

Base

-

10

0.1 < 

m

< 1

Base 

–

2

0.5 < 

m

< 1

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

Sign of

number

Magnitude

Of exponent

Sign of

exponent

2

0

2

1

2

2

2

-

1

2

-

2

2

-

3

2

-

4

2

-

5

2

-

6

2

-

7

2

3

2

4

2

5

2

6

Magnitude

Of mantissa
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[image: image68.wmf]Range & Precision

•

How closely individual computed values agree with each others

•

Single Precision

–

Use 32 bits per floating point number

–

1 sign bit, 8 bit exponent, 23 bit mantissa

•

Double Precision

–

Use 64 bits per floating point number

–

1 sign bit, 11 bit exponent, 52 bit mantissa

•

Limiting the number of bits allocated for storage of the exponen

t 

means that there are upper and lower limits on the magnitude of 

floating point number 

(RANGE)

•

Limiting the number of bits allocated for storage of the mantiss

a 

means that there is a limit to the precision (number of signific

ant 

digits) for any floating point number 

(PRECISION)
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[image: image69.wmf]Example 

-

1

•

Binary mantissa for 

x

= 0.8125

k

2

-

k

b

k

r

k

= 

r

k

-

1

–

b

k

2

-

k

0

NA

NA

0.8125

1

0.5

1

0.3125 = 0.8125 

–

0.5

2

0.25

1

0.0625 = 0.3125 

–

0.25

3

0.125

0

0.0625 

4

0.0625

1

0.0000 = 0.0625 

–

0.0625

Therefore, the binary mantissa for 0.8125 is (exactly) (1101)

2
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[image: image70.wmf]Example 

-

2

•

Binary mantissa for 

x

= 0.1

k

2

-

k

b

k

r

k

= 

r

k

-

1

–

b

k

2

-

k

0

NA

NA

0.1

1

0.5

0

0.1 

2

0.25

0

0.0625 = 0.3125 

–

0.25

3

0.125

0

0.0625 

4

0.0625

1

0.0375 = 0.1 

–

0.0625

5

0.03125

1

0.00625 = 0.0375 

–

0.03125

6

0.015625

0

0

0.00625

7

0.0078125

0

0.00625

8

0.00390625

1

0.00234375 = 0.00625 

–

0.00390625

9

0.001953125

1

0.000390625 = 0.00234375 

-

0.001953125

10

0.0009765625

0

0.000390625

M

Therefore, the binary mantissa for 0.1 is  (000110011…)

2

The decimal value of 0.1 cannot be represented by a finite numbe

r of 

binary digits.
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[image: image71.wmf]•

Most real numbers cannot be stored exactly (they do not exist 

on the floating point number line)

–

Integers less than 2

52

can be stored exactly. Try:

>> x = 2^52

>> s = dec2bin(x)

>> x2 = bin2dec(s)

>> x2

-

x

–

Numbers with 15 (decimal) digit mantissa that are the exact sum 

of 

powers of (1/2) can be stored exactly.

•

Numerical values have limited range and precision

–

Values created by adding, subtracting, multiplying or dividing 

floating point values will also have limited range and precision

–

Quite often, the result of an arithmetic operation between two 

floating point values cannot be represented as another floating 

point value

Round

-

off Errors
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[image: image72.wmf]Floating Point Arithmetic

Operation

Result

2.0 + 2.0 = 4

floating point value is exact

9.0 

´

7.0 = 63

floating point value is exact

12.0/3.0 = 4

floating point value is exact

29/13 = 2.230769230769231

floating point value is approximate

29/1300 = 2.230769230769231 

´

10

-

2

floating point value is approximate

In MATLAB:

>> format long e

>> u = 29/13

u = 

2.230769230769231e+00

>> v = 13*u

v = 

29

>> v 

–

29

ans 

0

Two rounding errors are made in sequence

1.

During computation and storage of u

2.

During computation and storage of v

Fortuitously, the combination of rounding errors

produces the exact results
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[image: image73.wmf]Floating Point Arithmetic in MATLAB

In MATLAB:

>> format long e

>> u = 29/1300

u = 

2.230769230769231e

-

02

>> y = 29 

-

1300*u

y = 

3.552713678800501e

-

015

In exact arithmetic, the value of y should be zero.

The round off error occurs when u is stored. Since 29/1300 canno

t be expressed 

with a finite sum of the powers of (1/2), the numerical value st

ored in u is a 

truncated approximation to 29/1300

When y is computed, the expression 1300*u evaluates to a number 

slightly 

different than 29 because the bits lost in the computation and s

torage of u are 

not recoverable. 
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[image: image74.wmf]Quadratic Equation

•

The roots of

are

•

Consider

which has the roots of (to eleven digits):

Note that b

2

>> 4ac

b

2

= 2950.7 >> 4ac = 0.4

0

2

=

+

+

c

bx

ax

a

ac

b

b

x

2

4

2

-

±

-

=

0

1

.

0

32

.

54

2

=

+

-

x

x

576

0018410049

.

0

3181589950

.

54

2

1

=

=

x

x
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[image: image75.wmf]Compute roots with four digit arithmetic

•

Root 1:

•

Root 2: 
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[image: image76.wmf]Rationalize the numerator of the 

expression for the two roots

•

Root 1:

•

Root 2: 
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A robust solution is to use a formula that takes the sign of 

b

into account 

In a way that prevents catastrophic cancellation.

•

Use formula 1 when the sign(

b

) is negative

•

Use formula 2 when the sign(

b

) is positive
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[image: image77.wmf]Round off in Quadratic Equation

•

Finite precision causes round off in individual calculation

•

Effects of round off accumulate slowly

•

Subtracting nearly equal numbers leads to severe loss of 

precision. A similar loss of precision occurs when two numbers 

of very different magnitude are added

•

Since the round off is inevitable, solution is to create better 

algorithm 
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[image: image78.wmf]Implication for Routine Calculations

•

Floating point comparisons should involve “close enough” 

instead of exactly equality

Don’t :

if

x ==y, ….., 

end

Do

:

if

abs(x

-

y) < 

tol

, …., 

end

•

Terminate iterations when subsequent values are “close 

enough”

•

Express “close” in terms of 

–

Absolute difference, or

E

abs

= 

|x(k+1) 

–

x(k)|

–

Relative difference

E

rel

= 

|x(k+1) 

–

x(k) |/x(k+1)
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[image: image79.wmf]Truncation Errors

•

Consider the series of sin(x)

The …… terms are truncated

The size of the truncation error depends on x and the number of 
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Round off and truncation errors are both present in any 

numerical computation

•

Total numerical error is the summation of the truncation and 
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Summary of Relational and Logical Operators

		Relational operators involve comparison of two values

		The result of a relational operator is a logical (TRUE/FALSE) value

		Logical operators combine (or negate) logical values to produce another logical value

		There is always more than one way to express the same comparison










_1086760970.ppt


Debugging and Organizing MATLAB Programs

		Debugging……..

		Is inevitable

		Can be anticipated with good program design

		Can be done interactively in MATLAB



		Organized programs are…..

		Easier to maintain

		Easier to debug

		Not much harder to write
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On-line Help

		Use on-line help to request info on a specific function

		Use lookfor to find functions by keywords



		Syntax



help functionName

lookfor functionName



		Examples



>> help log10



 LOG10  Common (base 10) logarithm.

    LOG10(X) is the base 10 logarithm of the elements of X.   

    Complex results are produced if X is not positive.

 

    See also LOG, LOG2, EXP, LOGM.



>> lookfor logarithmic



LOGSPACE Logarithmically spaced vector.

LOGSIG Logarithmic sigmoid transfer function.
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Functions to Create Matrices





		diag

eye

ones

rand

zeros

linspace

logspace		Create a matrix with a specified diagonal entries or extract diagonal entries of a matrix
Create an identity matrix

Create a matrix with filled ones 

Create a matrix filled with random numbers

Create a matrix filled with zeros

Create a row vector of linearly spaced elements

Create a row vector of logarithmically spaced elements
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Functions for String Manipulations

		char

findstr
length
num2str
str2num
Strcmp
strmatch

strncmp
Sprintf
		Convert an integer to the character using ASCII code or combine character into a character matrix

Find string in another string
Return the number of characters in a string 
Convert a number to a string
Convert a string to a number
Compares two strings
Identifies rows of a character array that begin with a string

Compares the first n elements of two strings
Converts strings and numeric values to a string
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		Array Operators

		Array operators support element by element operations that are not defined by the rules of linear algebra

		Array operators are designated by a period pre-pended to the standard operator





Symbol			Operation



.*				element by element multiplication

./				element by element “right” division

.\				element by element “left” division

.^				element by element exponentiation



		Array operators are a very important tool for writing vectorized code
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Working with External data file

		Write data to a file



>> save fileName

>> save fileName variable1 variable2 …

>> save fileName variable1 variable2 … -ascii

		Read in data stored in matrices



>> load fileName

>> load fileName matrixVariable

		Loading data from external file



>> load wolfSun.dat

>> xdata = wolfSun(:,1)

>> ydata = wolfSun(:,2)

>> plot(xdata,ydata)
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Plotting

		Plotting (x,y) data



>> plot(x,y)

>> plot(xdata,ydata,symbol)

>> plot(x1,y1,symbol1,x2,y2,symbol2,…)



		Axis scaling and annotation



>> loglog(x,y)		log10(y) versus log10(x)

>> plot(x,y)		linear y versus linear x

>> semilogx(x,y)	linear y versus log10(x)

>> semilogy(x,y)	log10(y) versus linear x

		Multiple plot



>> subplot(2,2,1)	two rows, two column, this figure

		2D (contour) and 3D (surface) plotting



>> contour

>> plot3

>> mesh
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Examples of using array operators

>> a = [1 2 3];

>> b = [6 7 8];

>> c = a.*b



c =



     6    14    24



>> c = a./b



c =



    0.1667    0.2857    0.3750



>> d = a.\b



d =



    6.0000    3.5000    2.6667
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Working with Matrices and Vectors

		Addition and subtraction



>> a = [2 3 4];

>> b = [2 1 2];

>> c = a-b

c =

     0     2     2

>> d = a+b

d =

     4     4     6



		Polynomials

		MATLAB polynomials are stored as vectors of coefficients. The polynomial coefficients are stored in decreasing powers of x

		Example: 			. We want to know y(1.5)



	

	>> y = [1 0 -2 12];

	>> polyval(y,1.5)

	ans =

	   12.3750
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Examples of subscript and colon notations

>> a = [4 5 6;7 8 9;2 3 4];

>> b = a(3,2)

b =

     3

Note: Referring to an element on the third row and second column. 



>> c = a(3,4)

???  Index exceeds matrix dimensions.



Note: Referring to elements outside of current matrix dimensions results in an error. 



>> d = a(1:3,3)

d =

     6

     9

     4

Note: Referring to elements on the first 3 rows and third column. 
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Strings

		Strings are matrices with character elements

		String constant are enclosed in single quotes

		Colon notation and subscript operation apply





	>> first = 'Yudi';

	>> last = 'Samyudia';

	>> name = [first,' ',last]

	name =

		Yudi Samyudia

	>> length(name)

	ans =

	    13

	>> name(4:6)

	ans =

	i S
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Examples of ones, diag, zeros, eye

>> ones(3,3)

ans =

     1     1     1

     1     1     1

     1     1     1

>> zeros(2,3)

ans =

     0     0     0

     0     0     0

>> a = [1 2 3;4 5 6;3 4 5]; b = diag(a)

b =

     1

     5

     5

>> diag(a(1:3))

ans =

     1     0     0

     0     4     0

     0     0     3

>> eye(3)

ans =

     1     0     0

     0     1     0

     0     0     1
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Matrices and Vectors

		Manual Entry

		The elements in a vector (or matrix) are enclosed in square brackets. 

		When creating a row vector, separate elements with a space.

		When creating a column vector, separate elements with a semicolon



	>> a = [1 2 3]

	a =

	     1     2     3

	>> b = [1;2;3]

	b =

	     1

	     2

	     3

	>> c = [1 2 3;2 3 4]

	c =

	     1     2     3

	     2     3     4
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Multiple statements per line

		Use commas or semicolons to enter more than one statement at once. Commas allow multiple statements per line without suppressing output



	>> a = 1; b = [8 9], c = b'

	b =

	     8     9

	c =

	     8

	     9
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Creating Vectors with Built-in Functions

		The linspace function creates vectors with elements having uniform linear spacing

		The logspace function creates vectors with elements having uniform logarithmic spacing





>> u = linspace(0,2,5)

u =

         0    0.5000    1.0000    1.5000    2.0000

>> u = logspace(0,2,5)

u =

	    1.0000    3.1623   10.0000   31.6228  100.0000








_1086762572.ppt


Transpose Operator and Overwriting

		Once a vector (or a matrix) is created and assigned to a variable, the variable can be transformed with other operators.

		The transpose operator converts a row vector to a column vector (and vice versa).



		>> a = [2 4 5]

		a =

		     2     4     5

		>> a'

		ans =

		     2

		     4

		     5

		The variable can be reassigned	



		>> a = a'

		a =

		     2

		     4

		     5
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Type of Variables

		MATLAB variables are created with an assignment statement





>> x = expression



Where expression is a legal combination of numerical values, mathematical operators, variables and function calls that evaluates to a matrix, vector or scalar

		Matrix

		A two or n dimensional array of values

		The elements can be numeric values (real or complex) or characters (must be defined first when executed)

		Vector

		A one dimensional array of values

		A matrix with one row or one column

		Scalar

		A single value

		A matrix with one row and one column   
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MATLAB Variable Names

		Legal variable names:

		Begin with one of a-z or A-Z

		Have remaining characters chosen from a-z, A-Z,0-9, or –

		Have a maximum length of 31 characters

		Should not be the name of a built-in variables, functions, or user-defined functions



Note: 

		myname and myName are different variables. MATLAB is case sensitive.

		Only use built-in variables on the right hand side of an expression

		Exception: i and j are pre assigned to         . One or both of i and j are often reassigned as loop indices.	









1


-





_1086762558.ppt


Notations

		Subscript notation

		If A is a matrix, A(i,j) selects the element in the i-th row and j-th column

		The subscript notation can be used on the right hand side (or left hand side) of expression to refer to (or assign to) a matrix element

		Colon notation

		Colon notation is very powerful and very important in the effective use of  MATLAB. The colon is used as an operator and as a wildcard

		Create vector

		Refer to (or extract) ranges of matrix elements

		Syntax:



Startvalue:endvalue

Startvalue:increment:endvalue  
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Basic Operations

		Enter formula at the command prompt



>> 3 + 4 - 1

ans =

     6

>> ans/3

ans =

     2

		Define and use variables



>> a = 6;

>> b = 7

b =

     7

>> c = a/b

c =

    0.8571



Note: Results of intermediate steps can be suppressed with semicolon 
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List of Built-in Variables

		ans

eps

pi

realmax

realmin

inf

NaN		Value of expression when that expression is not assigned to variable

Floating point precision

3.141492…. 

Largest positive floating point number

Smallest positive floating point number


A number larger than realmax

Not a number
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MATLAB Workspace

		All variables defined as the result of entering statements in the command window, exist in the MATLAB workspace



>> who

Your variables are:

a    ans  b    c 

		Being aware of the workspace allows you to

		Create, assign and delete variables

		Load data from external files

		Manipulate the MATLAB path

		The whos command lists the name, size, memory allocation and the class of each variables defined in the workspace



>> whos

  Name      Size           Bytes  Class



  a         1x1                8  double array

  ans       1x1               8  double array

  b         1x1                8  double array

  c         1x1                8  double array



Grand total is 4 elements using 32 bytes

Built-in variable classes are double, char,

sparse, struct, and cell

The class of a variable determines the type

of data that can be stored
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Built-in Variables and Functions

		pi (= ) and ans are a built-in variable



>> pi

ans =

    3.1416

>> sin(ans/4)

ans =

    0.7071

Note: There is no “degrees” mode. All angles are measured in radians.

		Many standard mathematical functions, such as sin, cos, log, and log10, are built in



> log(10)

ans =

    2.3026

>> log10(10)

ans =

     1

Note: log represents a natural logarithmic. 
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Comment Statements

		Write comments as you write the code, not after

		Include a prologue that supports “help”

		First line of a function is the definition

		Second line must be a comment statement

		All text from the second line up to the first non-comment is printed in response to: help fileName.

		Assume that the code is going to be used more than once

		Comments should be short notes that augment the meaning of the program statements. Do not parrot the code

		Comments alone do not create good code

		You cannot fix a bug by changing the comments 
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Start and End MATLAB Session

		Starting MATLAB

		Double click on the MATLAB icon

		After startup, MATLAB displays a command window (>>) for entering commands and display text only results.

		MATLAB responds to commands by printing text in the command window, or by opening a figure window for graphical output

		Moving between windows

		Toggle between windows by clicking on them with mouse

		Ending MATLAB

		Type “quit” at the command prompt (>>)



>> quit

		Click on the window toggle (x) 
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MATLAB Windows





Launch Padiorkspace:
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‘Command History/Current Directory.
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Debugging Tools

		MATLAB version 5.x (and later) has an interactive debugger

		The type and dbtype commands are used to list contents of an m-file

		The error function prints a message to the screen, and stops execution. This provides for graceful failure and the opportunity to inform the reader of potential causes for the error

		The warning function prints a message to the screen, but does not stop execution

		pause or keyboard commands can be used to temporarily halt execution
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Overview

		Basic MATLAB Operations



Start and End MATLAB session

Basic operations

Built-in variables and functions

MATLAB Workspace

On-line Help

		Notations and Types of Variables

		Matrices and Vectors



Creating matrices and vectors

Operations with the matrix (or vector) element

		Working with Matrices and Vectors



Linear algebra

Vectorized operations

Array operators

		Plotting 
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Modular Code

		A module should be dedicated to one task

		Flexibility is provided by input/output parameters

		General purpose modules need….

		Description of input/output parameters

		Meaningful error messages so that user understands the problem

		Reuse modules

		Debug once, use again

		Minimize duplication of code

		Any improvements are available to all programs using that module

		Error messages must be meaningful so that user of general purpose routine understands the problem

		Organization takes experience

		Goal is not to maximize the number of M-files

		Organization will evolve on complex projects
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Programming Style

		A consistent programming style gives your program a visual familiarity that helps the reader quickly comprehend the intention of the code

		A programming style consists of:

		Visual appearance of the code

		Conventions used for variable names

		Documentation with comment statements

		Use visual layout to suggest organization

		Indent if….end and for….end blocks

		Blank lines separate major blocks of code

		Use meaningful variable names

		Follow Programming and Mathematical Conventions
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Example

function x = Gauss(A,b),

%

% Inputs:

%	A is the n by n coefficient matrix

%	b is the n by k right hand side matrix

%

% Outputs:

%	x is the n by k solution matrix

%

 

[n,k1]=size(A); [n1,k] = size(b); x = zeros(n,k);

 

for i=1:n-1,

	m=-A(i+1:n,i)/A(i,i);

	A(i+1:n,:) = A(i+1:n,:) + m*A(i,:);

 	b(i+1:n,:) = b(i+1:n,:) + m*b(i,:);

end;

 

x(n,;) =b(n,:) ./A(n,n);

 

for i=n-1:-1:1,

     x(i,:) =(b(i,:)-A(i,i+1:n)*x(i+1:n,:))./A(i,i);

end;

Put Comments

Meaningful name

Indent for repetition
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Preemptive Debugging

		Use defensive programming

		Do not assume the input is correct. Check it.

		Provide a “catch” or default condition for a if…elseif…else….

		Include optional print statements that can be switched on when trouble occurs

		Provide diagnostic error messages

		Break large programming projects into modules

		Develop reusable tests for key modules

		Good test problems have known answers

		Run the tests after changes are made to the module

		Include diagnostic calculations in a module

		Enclose diagnostic inside if…end blocks so that they can be turned off

		Provide extra print statements that can be turned on and off 
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Comparison of break and return

function k = demobreak(n)

..........

while k<=n

    if x(k)>0.8

        break;

    end

    k= k+1;

end

…………

function k = demoreturn(n)

.........

while k<=n

    if x(k) > 0.8

        return;

    end

    k = k+1

end







Jump to end of enclosing

“while …. end” block





Return to calling

function
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Logical Indexing

		Use a vector or matrix as the mask to select elements from another matrix



FIND   Find indices of nonzero elements.

    I = FIND(X) returns the indices of the vector X 

    that are non-zero.  



REM    Remainder after division.

    REM(x,y) is x - y.*fix(x./y) if y ~= 0. 

>> x = sqrt(0:4:20)

x =

  Columns 1 through 5 

         0    2.0000    2.8284    3.4641    4.0000

  Column 6 

    4.4721

>> j = find(rem(x,2)==0)

j =

     1     2     5

>> z = x(j)

z =

     0     2     4
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Programming Tips (2)

Inline function objects

		Usefulness:

		Eliminate need to write separate m-files for functions that evaluate a simple formula

		Useful in all situations where feval is used. 

		Example: 









Global variables

		Usefulness:

		Allows bypassing of input parameters if no other mechanism (such as pass-through parameters) is available

		Provides a mechanism for maintaining program state (GUI application)



function y = myFun(x)

y = x.^2 - log(x);



myFun = inline('x.^2 - log(x)');
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Workspace



>> x=1;

>> y = 2;

>> s = 1.2;

>> z = localFun(x,y,s)

localFun.m



Function d = localFun(a,b,c)

…………

d = a + b*c;

(x,y,s)           (a,b,c)

z                           d

Local variables

Workspace



>> x=1;

>> y = 2;

>> global ALPHA

>> ALPHA = 1.2

>> z = globalFun(x,y)

globalFun.m



Function d = globalFun(a,b)

…………

d = a + b*ALPHA;

(x,y)           (a,b)

z                           d

Global variable
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Programming Tips (1)

Variable Input and Output Arguments

		Each function has internal variables nargin and nargout

		Use the value of nargin at the beginning of a function to find out how many input arguments were supplied

		Use the value of nargout at the end of a function to find out how many input arguments are expected

		Usefulness:

		Allows a single function to perform multiple related tasks

		Allows functions to assume default values for some inputs, thereby simplifying the use of the function for some tasks

		Examples: see plot.m



Indirect function evaluation (feval function)

		The feval function allows a function to be evaluated indirectly

		Usefulness:

		Allows routines to be written to process an arbitrary f(x)

		Separates the reusable algorithm from the problem specific code
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Example

y = ............% some computation to define y

for j =1:length(y)

    if y(j)>0

        s(j) = sqrt(y);

    else

        s(j) = 0;

    end

end

y = ............% some computation to define y

s = zeros(size(y));

for j=1:length(y)

    if y(j)>0

        s(j) = sqrt(y(j));

    end

end

“Without vectorization”

“With vectorization”



“Pre-allocated memory”
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Array Indexing

		Use a vector or matrix as the “subscript” of another matrix



>> x = sqrt(0:4:20)

x =

  Columns 1 through 5 

         0    2.0000    2.8284    3.4641    4.0000

  Column 6 

    4.4721

>> i = [1 2 5];

>> y = x(i)

y =

     0     2     4

k = 0;

for i = [1 2 5]

    k = k+1;

    y(k) = x(i)

end










_1086760947.ppt


Vectorization

		Vectorization is the use of vector operation (MATLAB expression) to process all elements of a vector or matrix.

		Properly vectorized expressions are equivalent to looping over the elements of the vectors or matrices being operated upon.

		A vectorized expression is more compact and results in code that executes faster than a non-vectorized expression

		To write vectorized code

		Use vector operations instead of loops, where applicable

		Pre-allocate memory for vectors and matrices

		Use vectorized indexing and logical functions 



“Code that is slow and correct is always better than code that is fast and incorrect.”

Start with the loops, then vectorized when needed.
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Example

x = '....';

switch x

case 'red'

    disp('Color is red')

case 'green'

    disp('Color is green')

case 'black'

    disp('Color is black')

otherwise

    disp('Color is not red, green or black')

end

“A switch construct is useful when a test value can take on discrete value that

are either integers or strings”
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Examples of for loops

for i = 1:2:n,

    y(i) = x(i)^2;

end

for i = n:-1:1,

    y(i) = x(i)^2;

end

x = 1:5;

sumx = 0;

for i = 1:length(x),

    sumx = sumx + x(i);

end

“for loops are most often used when each element in a vector or matrix is to 

be processes”



Increment is increasing

or decreasing 
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Examples of while loops

x = ….

y = ….. 

while abs(x-y) < error,

    z = x – 2*x +1;

    y = sqrt(z);

end

		 “while loops are most often used when an iteration is repeated until



   a termination criterion is met”.

		 The break and return statements provide an alternative way to exit from  



  a loop construct. break and return may be applied to for loops or while loops

		 break is used to escape from an enclosing while or for loop. Execution continues



  at the end of the enclosing loop construct

		 return is used to force an exit from a function. This can have the effect of escaping



  from a function. Any statements following the loop that are in the function body are 

  skipped.  
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Repetition or Looping

		A sequence of calculations is repeated until either

		All elements in a vector or matrix have been processed, OR

		The calculations have produced a result that meets a predetrmined termination criterion

		Repetition in MATLAB

		for loops







		while loops



for index = expression

      block of statements

end

while expression

      block of statements

end
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Examples

if x>0

    disp('x is positive')

end

if x<0

    disp('x is negative')

else

    disp('x is positive')

end

if x>2

    disp('x is greater than two')

elseif x<0

    disp('x is negative')

else

    disp('x is between zero and two')

end
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Conditional Execution or Branching (2) 

		Conditional execution in MATLAB:



(2) Use switch …. case …case….end

switch expression

case value1

	block of statements

case value2

	block of statements

case value3 

	block of statements

otherwise

	block of statements

end
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Conditional Execution or Branching (1) 

		A comparison or another logical test is often followed by a block of commands to be executed (or skipped).

		Conditional execution in MATLAB:



(1) Use if…else….end

if expression

	block of statements

end

if expression

	block of statements

elseif expression

	block of statements

else

	block of statements

end

if expression

	block of statements

else

	 block of statements

end
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Truncation Errors

		Consider the series of sin(x)







The …… terms are truncated





The size of the truncation error depends on x and the number of term included in fsum. For small x, only a few term are needed to get a good approximation of sin(x).
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Examples of a Function M-File

mult.m

function mult(x,y),

%

%

x*y

>> x = 1; y = 3;

>> mult(x,y)

kali.m

>> x = 1; y = 3; z= 4;

>> [t,n] = kali(x,y,z)

t =

     7

n =

    13

function [s,p] = kali(x,y,z)

%

s = x*y+z;

p = x+y*z;

Script-file as 

main program 

to assign data

for the input     parameters



Script-file as 

main program 

to assign data

for the input     parameters
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Flow Control

		To enable the implementation of computer algorithm, a computer language needs control structures for

		Comparison

		Conditional execution: branching 

		Repetition: looping or iteration



		Comparison

		Is achieved with relational operators. Relational operators are used to test whether two values are equal, greater than or less than another.

		The result of a comparison may also be modified by logical operators










_1086760911.ppt


Examples of Relational Operators

>> a = 2; b = 4;

>> c = a < b

c =

     1

>> d = a>b

d =

     0

>> x = 3:7; y = 5:-1:1;

>> z = x>y

z =

     0     0     1     1     1



c = 1 means TRUE

d = 0 means FALSE
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Logical Operators

		Logical operators are used to combine logical expressions (with “and” or “or”), or to change a logical value with “not”





Operator		Meaning

	&			and

	|			or

	~			not



		Example:



>> a = 2; b = 4;

>> c = a < b

c =

     1

>> d = a>b

d =

     0

>> e = a&d

e =

     0



1 & 1 = 1

1 & 0 = 0

1 or 0 = 1

~1 = 0
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Relational Operators

		Relational operators used in MATLAB are:



<		less than

<=		less than or equal to

>		greater than

>=		greater than or equal to

~=		not equal to

		The result of comparison: True or False. In MATLAB,

		Any nonzero value (including non empty string) is equivalent to True

		Only zero is equivalent to False





Note: The <=, >= and ~= operators have “=“ as the second character. =<, => and =~ are not valid operators.
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READ Inputs and WRITE Outputs

		It is usually desirable to print results to the screen or to a file

		On rare occasions, it may be helpful to prompt the user for information not already provided by the input parameters to a function





READ Inputs to functions

		Use input function 

		Use of input parameters to functions are preferred





WRITE Outputs from function

		disp function for simple output

		fprintf function for formatted output
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Examples of READ and WRITE

>> x = input('Enter value of x:');

Enter value of x:

input command

disp command

>> y = 4:6; disp(y)

     4     5     6

fprint command

>> x = 4;

>> fprintf('Square root of %g is %8.6f\n',x,sqrt(x));

Square root of 4 is 2.000000

NOTE:



disp command	Simple to use. Provide limited control over appearance of output



fprintf command	Slightly more complicated than disp, but provide total control

		over appearance of outputs 
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Further Notes on Input and Output Parameters

		Values are communicated through input and output arguments

		Variables defined inside a function are local to that function

		Local variables are invisible to other functions and to the command window environment

		The number of return variables should be match the number of output variables provided by the function

		If not the same, the m-file are still working but not returning all variables in the command window

		nargout can relax this requirement 
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Development of a Script M-file

		Choose New… from File menu

		Enter the sequence of command lines

		Example: Plotting a quadratic function (exp1.m)





x = [0:.1:10];

y = x.^2 - 2*x;

plot(x,y);

xlabel('Input');

ylabel('Output');

grid on;

axis([min(x) max(x) min(y) max(y)]);



		Choose Save …. from the File menu

		Save as exp1.m

		Run it



>> exp1





nding

Input
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Function M-Files

		Function M-files are subprograms

		Functions use input and output parameters to communicate with other functions and the command window

		Functions use local variables that exist only while the function is executing. Local variables are distinct from the variables of the same names in the workspace or in other functions

		Input parameters allow the same calculation procedure (algorithm) to be applied for different data. 

		Function M-files are reusable

		Functions can call other functions

		Specific tasks can be encapsulated into functions.

		Enable the development of structured solutions (programming) to complex problems 
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Syntax of function m-files

		The first line of a function m-file has the form





function [outArg] = funName(inArg)



		outArg are the assigned output parameters for this function

		A comma separated list of variable names

		[ ] is optional for only one output argument

		Functions with no outArg are legal



		inArg are the input parameters to be used in the function

		A comma separated list of variable names

		Functions with no inArg are legal
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Side Effects of Script M-Files

		All variables created in a script M-file are added to the workspace.

		The variables already existing in the workspace may be overwritten

		The execution of the script can be affected by the state variables in the workspace

		Side Effects from scripts

		Create and change variables in the workspace

		Give no warning that workspace variables have changed





“Because scripts have side effects, it is better to encapsulate any mildly complicated numerical in a function M-file”
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Preliminaries

		M-files are files that contain MATLAB programs

		Plain text files

		File must have “.m” extension

		Use MATLAB editor (File, Open/New, M-File)

		Executing M-files

		M-files must be in the current active MATLAB path

		Use pwd to check the current active MATLAB path

		Manually modify the path: path, addpath, rmpath, or addpwd

		….or use interactive Path Browser

		A program can exist, and be free of errors, but it will not run if MATLAB cannot find it
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MATLAB Script M-Files

		Collection of executed MATLAB commands

		Not really a program

		Useful for tasks that never change

		Script variables are part of workspace

		Useful as a tool for documenting assignments

		Use a script M-file to run function for specific parameters required by the assignment

		Use a function M-file to solve the problem for arbitrary parameters



Tips:

		As a script M-file is a collection of executed MATLAB commands, no advantages over the use of script, except for “documentation”.

		The main program is often implemented using a script M-file

		Always use a function M-file when dealing with the possible changes in parameters/inputs
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Round off and Truncation Errors

		Round off and truncation errors are both present in any numerical computation

		Total numerical error is the summation of the truncation and round off errors

		Minimize the round off errors is by increasing the the number of significant figures of the computer, or by reducing the number of computations

		Minimize the truncation errors is by decreasing the step size, or by increasing the number of computations





“The truncation errors are decreased as the round off errors are increased.”
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Tips for Reduction of Numerical Errors

		Avoid subtraction two nearly equal numbers

		Loss of significance

		Extend the arithmetic precision

		Sort the numbers and work with the smallest number first 

		Predict the truncation errors using Taylor series 
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Overview

		M-Files

		Script m-files

		Function m-files

		Flow control

		Relational operators

		Conditional execution

		Loops

		Vectorization

		Pre-allocation of vectors and matrices

		Array and Logical indexing

		Programming tips

		Variable number of I/O parameters

		Indirect function evaluation

		Inline function objects

		Global variables

		Debugging and Organizing MATLAB Programs  
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Total Numerical Errors

Truncation errors

Round off errors

Total Errors

Logarithmic

Of Errors

Logarithmic of Step size
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Taylor Series

		For a sufficiently continuous function f(x) on the interval x  [a,b], we define the nth order Taylor series approximation Pn(x)













Then, there exists (x) with x0  (x)  x such that



and
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Round-off Errors

		Most real numbers cannot be stored exactly (they do not exist on the floating point number line)

		Integers less than 252 can be stored exactly. Try:



>> x = 2^52

>> s = dec2bin(x)

>> x2 = bin2dec(s)

>> x2-x

		Numbers with 15 (decimal) digit mantissa that are the exact sum of powers of (1/2) can be stored exactly.



		Numerical values have limited range and precision

		Values created by adding, subtracting, multiplying or dividing floating point values will also have limited range and precision

		Quite often, the result of an arithmetic operation between two floating point values cannot be represented as another floating point value
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Compute roots with four digit arithmetic

		Root 1:









		Root 2: 



Error: 0.4 %

Error: 100 %

The poor approximation to Root 2 is caused by round off in the calculation

of   	. This leads to the subtraction of two equal numbers.
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Round off in Quadratic Equation

		Finite precision causes round off in individual calculation

		Effects of round off accumulate slowly

		Subtracting nearly equal numbers leads to severe loss of precision. A similar loss of precision occurs when two numbers of very different magnitude are added

		Since the round off is inevitable, solution is to create better algorithm 
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Implication for Routine Calculations

		Floating point comparisons should involve “close enough” instead of exactly equality



Don’t :	if x ==y, ….., end

Do	:	if abs(x-y) < tol, …., end



		Terminate iterations when subsequent values are “close enough”



		Express “close” in terms of 

		Absolute difference, or



		Eabs = |x(k+1) – x(k)|

		Relative difference



Erel = |x(k+1) – x(k) |/x(k+1)
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Rationalize the numerator of the expression for the two roots

		Root 1:









		Root 2: 



A robust solution is to use a formula that takes the sign of b into account 

In a way that prevents catastrophic cancellation.

		 Use formula 1 when the sign(b) is negative

		 Use formula 2 when the sign(b) is positive



Catastrophic cancellation

error

Error: 0.05 %
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Floating Point Arithmetic in MATLAB

In MATLAB:

	>> format long e

	>> u = 29/1300

	u = 

	        2.230769230769231e-02

	>> y = 29 - 1300*u

	y = 

	        3.552713678800501e-015

	

In exact arithmetic, the value of y should be zero.



The round off error occurs when u is stored. Since 29/1300 cannot be expressed with a finite sum of the powers of (1/2), the numerical value stored in u is a truncated approximation to 29/1300

When y is computed, the expression 1300*u evaluates to a number slightly different than 29 because the bits lost in the computation and storage of u are not recoverable. 
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Quadratic Equation

		The roots of





are





		Consider





which has the roots of (to eleven digits):



Note that b2 >> 4ac	b2 = 2950.7 >> 4ac = 0.4
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Floating Point Arithmetic





Operation				Result



2.0 + 2.0 = 4				floating point value is exact

9.0  7.0 = 63				floating point value is exact

12.0/3.0 = 4				floating point value is exact

29/13 = 2.230769230769231		floating point value is approximate

29/1300 = 2.230769230769231  10-2 	floating point value is approximate

In MATLAB:

	>> format long e

	>> u = 29/13

	u = 

	        2.230769230769231e+00

	>> v = 13*u

	v = 

	        29

	>> v – 29

	ans 

	       0

Two rounding errors are made in sequence

		During computation and storage of u

		During computation and storage of v





Fortuitously, the combination of rounding errors

produces the exact results
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Computer Representation of Non-Integers

		Floating point number





m.be	m = mantissa; b= the base of number system

			e = the exponent

			1/b < m < 1	: Normalization

Base-10	0.1 < m < 1

Base –2	0.5 < m < 1
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Example - 1

		Binary mantissa for x = 0.8125





k		2-k	bk	rk = rk-1 – bk 2-k



0		NA	NA	0.8125

1		0.5	1	0.3125 = 0.8125 – 0.5

2		0.25	1	0.0625 = 0.3125 – 0.25

3		0.125	0	0.0625 

4		0.0625	1	0.0000 = 0.0625 – 0.0625



Therefore, the binary mantissa for 0.8125 is (exactly) (1101)2
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Example - 2

		Binary mantissa for x = 0.1





k		2-k		bk	rk = rk-1 – bk 2-k



0		NA		NA	0.1

1		0.5		0	0.1 

2		0.25		0	0.0625 = 0.3125 – 0.25

3		0.125		0	0.0625 

4		0.0625		1	0.0375 = 0.1 – 0.0625

5		0.03125		1	0.00625 = 0.0375 – 0.03125

6		0.015625	0	0	0.00625

7		0.0078125	0	0.00625

8		0.00390625	1	0.00234375 = 0.00625 – 0.00390625

9		0.001953125	1	0.000390625 = 0.00234375 - 0.001953125

10		0.0009765625	0	0.000390625		



Therefore, the binary mantissa for 0.1 is  (000110011…)2

The decimal value of 0.1 cannot be represented by a finite number of binary digits.
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Range & Precision

		How closely individual computed values agree with each others

		Single Precision

		Use 32 bits per floating point number

		1 sign bit, 8 bit exponent, 23 bit mantissa

		Double Precision

		Use 64 bits per floating point number

		1 sign bit, 11 bit exponent, 52 bit mantissa

		Limiting the number of bits allocated for storage of the exponent means that there are upper and lower limits on the magnitude of floating point number (RANGE)

		Limiting the number of bits allocated for storage of the mantissa means that there is a limit to the precision (number of significant digits) for any floating point number (PRECISION)
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Preliminaries

		Significant Figures of a Number

		Digits that can be used with confidence

		23400 can have three, four or five significant figures

		2.34  104 or 2.340  104 or 2.3400  104 

		We need criteria to specify how confident we are in our approximate result

		Some numbers (, e or 1/3) cannot expressed exactly by a limited number of digits. Because computers retains only a finite number of significant figures, there are always an error, called as round-off errors

		Numerical errors

		Arise from the use of approximations to represent exact mathematical operations and quantities

		True value = approximation + error 

		Relative error = error/true value

		True value will be known only when we deal with functions that can be solved analytically. In many actual situations, the true value is rarely available.



		Relative error = approximate error/approximation



		         = (current approximation – previous approximation)/current approximation
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Computer Representation of Integers

		16 Bit computer 

		Integer: -32,767 to 32,767

		Number –173: 

		(1  27) = 128

		(1  25) =   32

		(1  23) =     8

		(1  22) =     4

		(1  20) =     1
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Overview

		Digital Representation of Numbers

		Integers

		Non-integers

		Floating point





		Errors in Numerical Computing

		Precision

		Round-off errors

		Absolute and Relative Error

		Truncation Errors
















