COMPUTER SIMULATION AND OPTIMIZATION OF THE NOx ABATEMENT

SYSTEM AT THE RADFORD FACILITY AND ARMY AMMUNITION PLANT

by
Andrew J. Sweeney
Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University
in partial fulfilment of the requirements for the degree of
MASTER OF SCIENCE
in

Chemical Engineering

APPROVED:

Y.A. Liu, Chairman

William L. Conger Joseph T. Sullivan

December, 1999

Blacksburg, Virginia



COMPUTER SIMULATION AND OPTIMIZATION OF THE NOx ABATEMENT
SYSTEM AT THE RADFORD FACILITY AND ARMY AMMUNITION PLANT

by
Andrew J. Sweeney
Committee Chairman: Dr. Y. A. Liu

Department of Chemical Engineering
(ABSTRACT)

This thesis discusses findings gained through work with the NOx abatement system at Radford
Facility and Army Ammunition Plant (RFAAP). Removal of harmful substances from flue-gas
emissions has garnered increased priority in the chemical industry in preceding decades, as
governmental restrictions on these substances become more stringent and as national awareness
concerning environmental quality and resource utilization continues to grow. These reasons make
the study of NOx abatement an important and challenging endeavor.

This work concerns itself specifically with reduction of NOx in flue-gas emissions from
stationary sources. First we present an overview of current technology and approaches to
controlling NOXx for stationary sources. Next, we focus in on one particular approach to control of
NOx within the context of a case study of the technology used at the Radford Facility and Army
Ammunition Plant. RFAAP employs a scrubber/absorber tower followed in series by a selective
catalytic reduction (SCR) reaction vessel in their NOx abatement system. We use as the method of
study computer simulations within ASPEN Plus, a process simulation software package for
chemical plants.

We develop three different models with which to characterize NOx abatement at RFAAP, a
conversion model, an equilibrium model and a kinetic model. The conversion-reaction model
approximates the absorption and SCR reactions with constant percentage extent-of-reaction values.
Though useful for initial investigation and mass balance information, we find the conversion
model’'s insensitivity to process changes to be unacceptable for in-depth study of the case of NOx
absorption and SCR. The equilibrium-reaction model works on the assumption that all the reactions
reach chemical equilibrium. For the conditions studied here, we find the equilibrium model
accurately simulates NOx absorption but fails in the case of SCR. Therefore, we introduce a
kinetic-reaction model to handle the SCR. The SCR reactions prove to be highly rate-dependant
and the kinetic approach performs well.



The final evolution of the ASPEN Plus simulation uses an equilibrium model for the
absorption operation and a kinetic model for the SCR. We explore retrofit options using this
combined model and propose process improvements. We end this work with observations of the
entire project in the form of conclusions and recommendations for improving the operation of the
NOx abatement system through process-parameter optimization and equipment-retrofit schemes.

By leading the reader through the process by which we arrived at a successful and highly
informative computer model for NOx absorption and SCR, we hope to educate the reader on the
subtleties of NOx abatement by absorption and SCR. We attempt to break down the numerous
complex processes to present a less daunting prospect to the engineer challenged with the
application of current NOx removal technology. In addition, we introduce the reader to the power
and usefulness of computer modeling in instances of such complexity. The model teaches us about
the details of the process and helps us develop concrete information for its optimization. Ideally,
the reader could use a similar approach in tackling related operations and not confine the usefulness
of this thesis to NOx absorption and SCR.

The audiences that we think would benefit from exposure to this thesis are the following:

* Environmental engineers with a NOx problem;

* Process engineers interested in optimization tools;

» Design engineers exploring flue-gas treatment options;

» Combustion engineer desiring to learn about SCR;

* Chemists and mathematicians intrigued by the complexities of NOx absorption

chemistry.
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