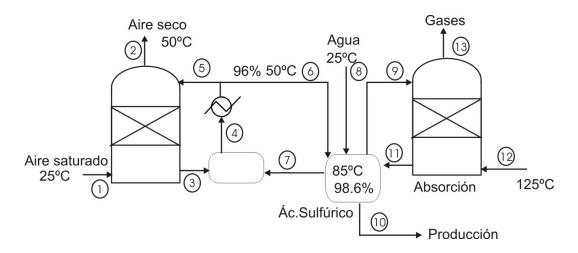
Examen de Tecnología Química Inorgánica. Segundo Parcial.

En una planta de fabricación de ácido sulfúrico a partir de azufre se seca una corriente de aire atmosférico en condiciones extremas de saturación a 25° C hasta una humedad despreciable. El secado se realiza en una torre rellena y en contracorriente con un caudal de ácido sulfúrico de 22000 kg/h, que entra a 50° C con una concentración del 96 % p. El caudal de la corriente de aire atmosférico, expresado como masa de aire seco, es de 36000 kg/h. A la salida de la torre el ácido se refuerza con ácido sulfúrico de una concentración de 98,6 % p y a una temperatura de 85° C . El ácido reforzado llega a una concentración del 96 % p. Este ácido se bombea, en parte, al sistema de absorción ,y en parte se recicla a la parte alta de la torre, pasando antes a través de un refrigerante, en el que se enfría desde la temperatura de bombeo hasta los 50° C .

A la torre de absorción entra una corriente de gases a 125° C con la siguiente composición: N_2 1050kmol/h O_2 25kmol/h SO_3 90kmol/h. Esta corriente se quiere absorber con un caudal de 30000kg/h de ácido sulfúrico del 98,6 %p a 85° C . El rendimiento de la absorción se puede considerar del 100 %.


La figura inferior muestra un esquema de la parte del proceso descrita.

Datos:

- Diagrama psicométrico del aire.
- Diagrama de entalpía del ácido sulfúrico y trióxido de azufre.
- Calores específicos medios válidos para las temperaturas de todas las corrientes (12) y (13) del problema: $N_2=6.9kcal/kmol^{\circ}C$ $O_2=7.1kcal/kmol^{\circ}C$.
- Tabla de calores de asociación desprendido en la absorción.
- Considérese despreciable el calor de absorción en el depósito al cual se alimenta agua.

Calcular:

- 1. Caudal, composición y temperatura de la corriente \bigcirc 3.
- 2. Caudales de las corrientes 4, 6 y 7.
- 3. Caudal de aporte de agua ($\fbox{8}$) y de producción $\fbox{10}$.
- 4. Temperatura de salida de los gases de la torre de absorción (\bigcirc).
- 5. Caudal, composición y temperatura de la corriente $\widehat{(1)}$.

Solución

Vapor de agua en el aire saturado. Mirando en el diagrama de Mollier se obtiene 20g/kg aire seco. Luego: 0.02*36000=720kg/h de vapor de agua.

Balances másico a la torre

Al agua: $720 + 0.04 * 22000 = m_{3,agua}$ Sulfurico: $0.96 * 22000 = m_{3,H_2SO_4}$

Se obtiene $m_{3,agua} = 1600 \text{ y } m_{3,H_2SO_4=21120}$, total $m_3 = 22720 \text{kg/h}$ y concentración 92.96 % p.

Balances másico al deposito

Global: $m_3 + m_7 = m_4$

Sulfúrico: $m_{3,H_2SO_4} + m_7 * 0.986 = m_4 * 0.96$

Se obtiene $m_4 = 49305 kg/h$ y $m_7 = 26585$

Balance de entalpía a la torre

 $m_1h_1 + m_5h_5 = m_3h_3 + m_2h_2$

Entalpías:

 $h_1 = 18$ kcal/kg del diagrama de Mollier

 $h_5 = -190$ kcal/kg del diagrama de entalpía de sulfúrico

 $h_2 = 12$ kcal/kg del diagrama de Mollier

Resulta un valor de $h_3 = -174,5kcal/kg \rightarrow T_3 = 100C$

Balance másico a la torre de absorción

Sulfúrico: $n_{9,H_2SO_4} + n_{12,SO_3} = n_{11,H_2SO_4}$ Agua: $n_{9,H_2O} - n_{12,SO_3} = n_{11,H_2O}$

De aquí se obtiene que sobra SO_3 luego tendremos un oleum. Todo el agua se convertirá a ácido sulfúrico y tendremos trioxido libre la cantidad $n_{12,SO_3} - n_{9,H_2O}$

Que da una concentración de $103.2\,\%\mathrm{p}$ de la corriente $\widehat{(1)}$.

Balance másico al depósito

Global: $m_8 + m_6 + m_{11} = m_9 + m_{10} + m_7$ Sulfúrico: $0.96m_6 + m_{11,H_2SO_4} = 0.986*(m_9 + m_{10} + m_7)$

Se obtiene $m_8 = 1026,2 \text{kg/h} \text{ y m}_{10} = 8945 \text{kg/h}$

Finalmente se realizan dos balances entálpicos, uno al depósito de donde se obtiene el valor de la entalpía de la corriente (11) (es la única incógnita) y otro a la torre de absorción de donde se obtiene la temperatura de la corriente (13) que es la única incógnita.